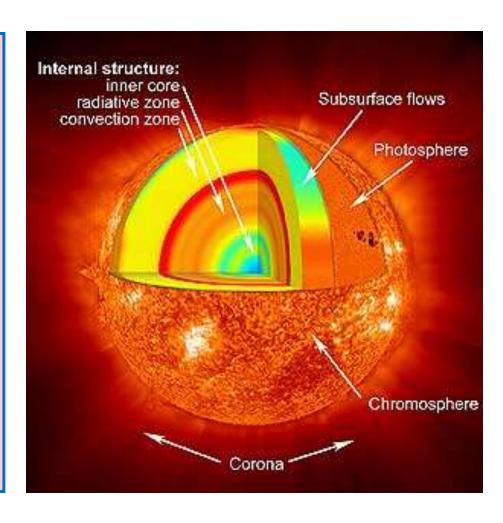
Solar Energy and Radiation Terminologies

Dr. Sudhir Kumar Chief Executive Green Energy Solutions, Pune

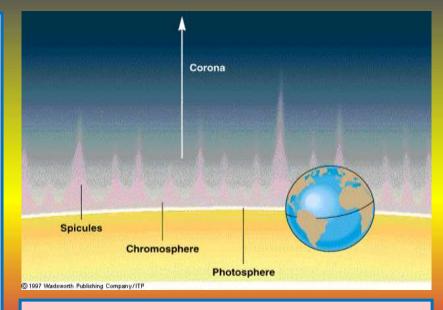
Mob: +91 96650 20206 drsk22@gmail.com

Common Energy Terms


- Energy: Thermal, Mechanical, Electrical, Renewable Energy
- What is Electricity?
- Current (Flow): Ampere (A) = One coulomb of electrical charge (6.24 x 10¹⁸ electrons) per second (C/s)
- Voltage (Population): Volts (V) = the difference of potential that would carry one ampere of current against one ohm resistance.
- Power (Rating): Watt (W) = VxA = VXC/s = Joules/s
- * kW, MW, kWh, MWh (Capacity of Plant MW or MWh?)
- PLF, kCal, Downtime, CUF, Outage
- ❖ Why W, J, V, A, M are capital?

Basics of Solar Energy

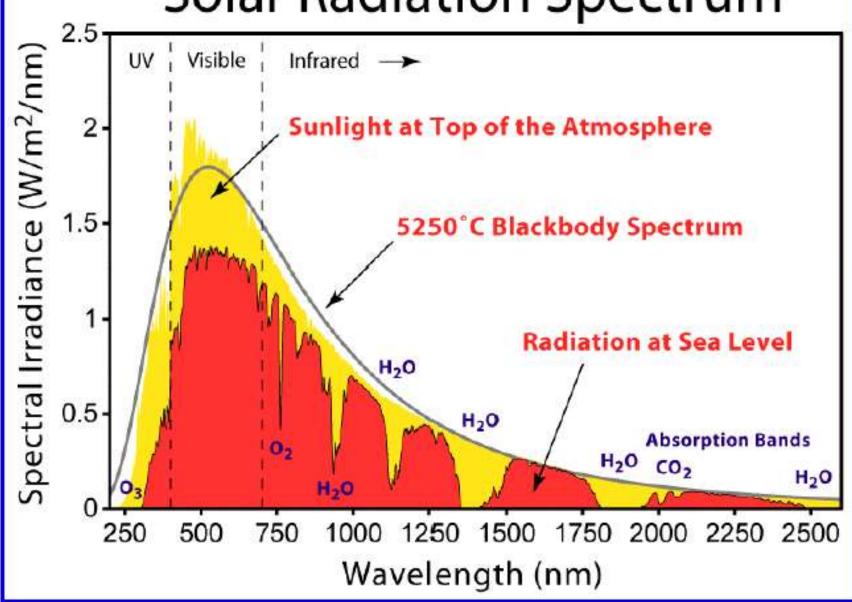
The Sun


Two Regions

- Inner layers i.e.
 interior is a sphere with radius R = 7x10⁸ miles
 - Innner Core
 - Radiative Zone and
 - Convection Zone
- Outer layers i.e. atmosphere (from innermost to outermost)
 - Photosphere
 - Chromosphere
 - Corona

The Sun: Outer Layers

- The photosphere:
 - 300 km thick
 - 6,000 Degree C
 - Covered by granulation
 - Visible wavelengths
- The chromosphere:
 - 2000 km thick
 - 10,000 Degree C
 - Ultraviolet wavelengths
 - Seen only during eclipse



- The corona:
 - Outermost layer
 - Extends millionsKms
 - 5,00,000 degrees C
 - Seen only during eclipse

Characteristics of the Sun

- Mass (kg): 1.989 x 10³⁰
- Diameter (km): 1.39 x 10⁶
- Mean density (gm/cm³): 1.410
- Mean surface temperature (°C): 6,000
- Age (billion years): 4.5
- Approximate wavelength ranges:
 - Ultraviolet : 200 400 nm
 - Visible : 400 800 nm
 - Near-Infrared: 800 4000 nm
 - Infrared : 4000 10000 nm
- Approximately 99%: 300 to 3000 nm
- Approximately 45%: 400 to 800 nm

Radiation Types

- The Sun Emits energy:
 - Electromagnetic radiation
 - At an extremely large and relatively constant rate
- Utilization: Heat, Light & UV
- Outer space: 1367.7 W/m²
- On earth surface: 1000 W/m²
- Direct radiation
- Diffuse radiation
- Global radiation: Direct + Diffuse

Solar Radiation Measurements

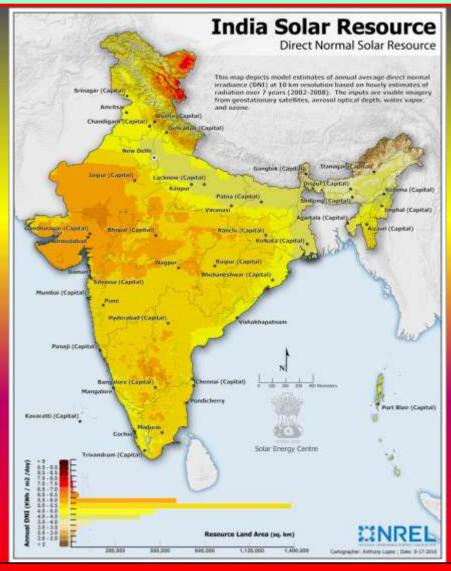
- Global horizontal irradiance (GHI): Pyranometer
- Total:
- Direct + Diffuse

Useful for PV

Solar Radiation Measurements

- Direct Normal Irradiance (DNI): Pyrheliometer
- Direct on perpendicular surface
- Useful for Reflectors, CSP

Solar Radiation Measurements


- Solar insolation Total amount of solar energy received at a particular location during a specified time period
- Unit: kWh/m²/day
- Power project :
 - CSP min. 1800 kWh/m²/yr (Reported)
 - SPV min. 1500 kWh/m²/yr (Suggested)
- Micro-grid: No standard
- Actual ground data: Not always available
- Derived data: NASA, METONORM, GeoModel

Solar Radiation Map: GHI

Ideal: > 1500 kWh/m²/yr, Maharashtra: > 2000 kWh/m²/yr (Good)

Solar Radiation Map: DNI

Ideal: $> 1800 \text{ kWh/m}^2/\text{yr}$, Maharashtra: $> 1900 \text{ kWh/m}^2/\text{yr}$ (Avg.)

- Radiant energy: Energy emitted in the form of electromagnetic radiation. Measured in joules (J)
- Radiant flux: Rate of flow of radiant energy w. r. t. time (Watt)
- Insolation: The actual amount of sunlight falling on a specific geographical location (incident solar radiation)
- Irradiance (E): Radiant energy incident on a surface per unit area per unit time (Watt/m²), (J/m²/sec) more popular kWh/m²/day

Direct solar radiation:

- Reaches the Earth's surface without being diffused, direct beam
- Atmospheric conditions reduce:
 - -10% on clear, dry days
 - -100% during thick, cloudy days
- Measured by Pyrheliometer

Diffuse solar radiation:

- Radiation scattered and reflected by:
 - Air molecules (Rayleigh scattering),
 - -Water vapour (Mia Scattering),
 - -Clouds, dust, pollutants,
 - -Forest fires and volcanoes

Global Radiation:

- The sum of the diffuse and direct solar radiation
- Measured by pyranometer
- The measured global horizontal solar irradiance is

$$I_{gh} = I_{bn} \cos \theta_c + I_{dh}$$

Where,

- I_{bn} irradiance coming directly from the sun's disk, measured normal to the rays and
- I_{dh} diffuse radiation falling on a horizontal surface
- θ_c Solar zenith angle at the mid-time between sunrise and solar noon for the monthly average day

Terrestrial radiation

- Long wave radiation emitted by the earth surface back into the atmosphere
- Most of it is absorbed by the water vapour in the atmosphere, while less than 10 % is radiated directly into space.

Extra-terrestrial radiation

- Solar radiation outside of the earth's atmosphere
- The top of the atmosphere 40 km from the earth's surface.

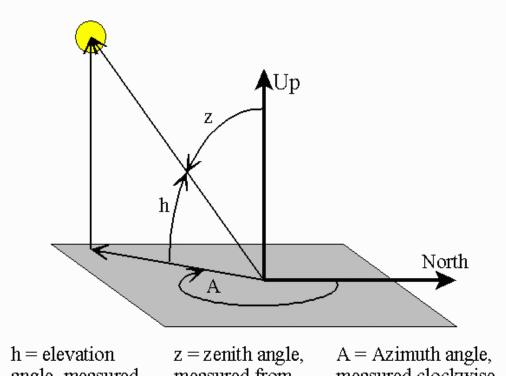
Clearness index:

Ratio of global horizontal solar radiation to the extraterrestrial horizontal solar radiation

$$K_{T} = H_{th} / H_{oh}$$

Earth Sun Angles

Solar altitude angle (h):


Angle between the radiation from the sun and projection on horizontal plane.

Zenith angle (z):

Angle between the radiation from the sun and line perpendicular to the horizontal plane

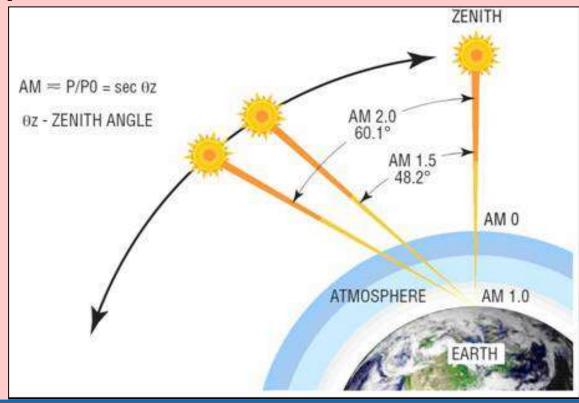
Solar azimuth angle (A):

Angle, measured clockwise on the horizontal plane, from the north-pointing coordinate axis to the projection of the sun's central ray

measured from vertical

measured clockwise from North

Air mass


Ratio of the distance that solar radiation travels through the earth's atmosphere (path length), to the distance (path length) it would travel if the sun were directly overhead.

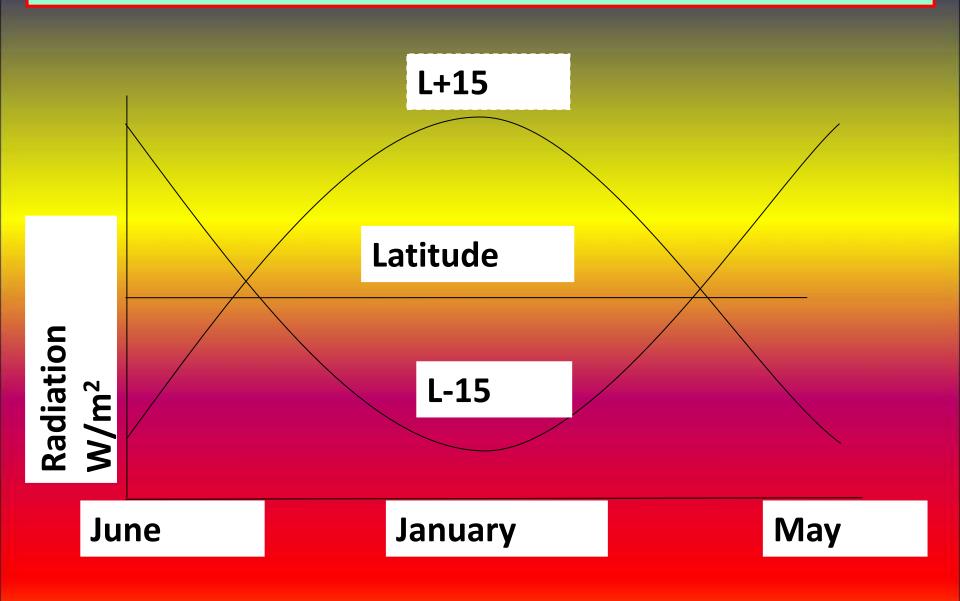
Different Spectrum:

- AM 0 Outside atmosphere
- AM 1 At the zenith
- AM 1.5 At 48°
- AM 2 At 60°

Standard Spectrum:

- •AM 1.5
- •25 °C
- ·1,000 W/m²
- For solar cell efficiency

Solar Technology Options


Solar Photovoltaic Electricity Generation

- Convert sunlight falling on PV cell into D.C. electricity
- Solar Thermal Direct Application
 - Water/ air heating
 - Process steam generation

Solar Thermal Electricity Generation

- Solar energy is focused through mirrors to heat working fluid
- Heated working fluid produce steam
- Drive a turbine-generator to produce electricity

Winter or Summer Optimization

Green Energy Solutions Dr. Sudhir Kumar 23

THANK YOU

Dr. Sudhir Kumar, Chief Executive, Green Energy Solutions,

8/15, Mazda Deluxe Homes, Porwal Park, Tank Road,

Off: Alandi Road, Yerwada, Pune - 411006, India.

Cell No. +91-9665020206, E-mail: drsk22@gmail.com